Designing Maintainability in
Software Engineering:

a Quantified Approach.
Tow G-

Result Planning Limited
Tom.Gilb@INCOSE.org

For ACCU Oxford UK
Friday 4t April 2008
1400 90 MInutes

April 14, 2008 www.gilb.com



Abstract.

e Software system ACQUISITION

maintenance costs W opmmws
are a substantial o

NANCE
part of the life

cycle costs.
 They can easily .
steal all available Poreitio Otsclscancs )

effort away from
new development.

April 14, 2008 www.gilb.com 2



Abstract

e | believe that this is because

* maintainability is, as good as
never, systematically engineered
into the software.

e QOur so-called software
architects bear a primary
responsibility for this, but
they do not engineer to
targets.

e They just throw in customs
and habits that seem
appropriate.

April 14, 2008

Management
MIB
Routing
Frotocol
DC-RIP Protocol Manager *Input "
* 4 Routing .
Table
Route C:> Redistribution . Manager Other
Store Manager Routes
| [ and
- Cambinad Protocals
. Routing
Table
Interface QZD Sockets .
Manager Manager
Interiace Active Routes
Information P Sockets " /" = = = = = =

Local
Interface IF Stack Farwarding
Infermation Table

Did you ever see ideas like
performance and quality, for example
‘Portability Levels’
in a software architecture diagram?

www.gilb.com 3



Abstract

e Weneedto

e define our maintainability requirements
guantitatively,

e Set quality investment targets that will pay
off,

e pursue long-term engineered
improvement of the systems, and then l O

‘architect’ and ‘engineer’ the resulting
system.

Quality through

Engineering Design
 Traditional disciplines may already in
principle understand this discipline,

e some may not understand it,

e some may simply not apply the
engineering understanding that is out
there

April 14, 2008 www.gilb.com 4



The Maintainability Problem

e Software systems are built under high pressure to
meet deadlines, and with initial emphasis on

performance, reliability, and usability. Transformational Platform
 The software attributes relating to later changes in
the software — maintainability attributes are:

e ot ; Episodes:1 , Content, Cont
* never specified quantitatively up front in the P Euntossed in Discrots Time |
software quality requirements (Crisis)
* never architected to meet the non-specified
maintainability quality requirements \ \ \
e never built to the unspecified architecture to *
meet the unspecified requirements
e never tested before software release - -
) o Epicenter:
 never measured during the lifetime of the |paiational context
System_ and Patterns
Yisible Over Time
“A number of people expressed the opinion that code is ﬁ ﬁ ﬁ
often not designed for change. Thus, while the code Platform: base for Creating Processes
meets its operational specification, Past Responsive to Immediate Future
R . . Issues and Deeper Patterns
for maintenance purposes it is poorly designed and

documented “ [Dart 93]

* Inshort, there is no engineering approach to
software maintainability.

April 14, 2008 www.gilb.com 5



What do we do in practice today?

* we might bullet point some high-level objectives
e (‘e Easy to maintain’)
* which are never taken seriously

e we might even decide the technology we will use to
reach the vague ideal

e (“e Easy to maintain through modularization,
object orientation and state of the art standard [ ocses | "B0500 | cot rain s v [ G
” TARE B:&[mh '0 movE BUT DRESS m IS AT
tOOIS ) 4 HIBE HORIZENS | forward STRAIGHT [Ptherens global ideas HAND
. . . . ( . ) " oachive | 1234 “impursive “nllllrﬂ:m 0 BUY A %E.PIWE‘SS 5 TAKE No
e larger institutions might have ‘software architects HUt ﬁ lcrion | spiny rums | orthks Arew
i vogle | B ey | oBsTAcizs oinninons | HOUSE | PARTY PLANS | sTRANGERS
who carry out certain customs, such as o~ T e
A ciget for | Comly Apusr |" Solve
“y . wird and i H
* decomposition of the software, woderflr | EHR ) o | mystery

e choice of software platforms and software
tools — generally intended to help — hopefully.

e But with no specific resulting level or type of
maintainability in mind.

e we might recommend more and better tools, but

totally fail to suggest an engineering approach [Dart
93].

e We could call this a ‘craft’ approach.

* Itis not ‘engineering’ or ‘architecture’ in the normal

S rp}rSiFM, 2008 www.gilb.com




Principles of Software Maintainability

e | would like to
suggest a set of
principles about
software
maintainability,
* in order to give

this talk a
framework:

Body Maintenance: {Relax, Exercise, Breathing, Diet, Positive Thinking and Meditation}
April 14, 2008 www.gilb.com 7



1. The Conscious Design Principle:

 Maintainability must be
consciously designed into a
system:

e failure to design to a set of
levels of maintainability

* means the resulting
maintainability is both bad
and random.

April 14, 2008 www.gilb.com

THEM]\G]CI




Conscious Design

e Clarify
— Robust =2

e 200 Days Between Restarts

* Find Solutions
— Triple Redundant Systems ? = '=——'=

* Verify Solutions im |
— 400 Days average achieved! = :

Flihe
Lol
NPT

T

HE MAGICIAN. |

April 14, 2008 www.gilb.com



2. The Many-Splendored Thing Principle.

e Maintainability is
* a wide set of change-
quality types,
 under a wide variety of
circumstances:

e so we must clearly define
what quality type we are
trying to engineer. Like:

* Portability, scalability, o
Ma i nta i Na bi I ity? /"r'g;lemi: guality /i\;triﬁunn] guality
\(Su.fen \\\ (health)

Humamstu: quality

/f‘;:cﬁnml quahn\\ P (environmental and
‘\ (service) / B Quality of food Qralnlues}

= Organoleptic qlml.lh
Symbolic quality (pleasure)

{cultural) —
NS <5.?£Zi'ifg“i]é§‘>

Cazes-Falertes, 2001.

At Awavw.youtube.com/watch?v=X«JiKAivTRo = Nat King Cole “Love is...” 10




Rock Solid Robustness: wawy ¢slendored

e Type: Cenpler Product Quality Requirement.

* Includes:
— {Seftware Downtime,
— Restone Speed,
— Testability,
— Fault Prevention Capability,
— Faalt Vsolation (Capability.
— Fault Analysce Capability,
— Fardware Debugging (Capability}.

April 14, 2008 www.gilb.com 11




- == Software Downtime:

v 10.00%

B

|

18.00%

Type: Sottware Quality Requirement. Version: 25 October 2007.

Part of: Rock Solid Robustness.

Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for defined
[Activity], for a defined [Intensity].>

Fail [Any Release or Evo Step, Activity = Recompute, Intensity = Peak Level] 14 days <- HFA
6.1.1

Goal [By 20087, Activity = Data Acquisition, Intensity = Lowest level] : 300 days ??
Stretch: 600 days.

April 14, 2008 www.gilb.com 12



Restore Speed:

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness

Ambition: Should an error occur (or the user otherwise desire to do so),
the system shall be able to restore the system to a previously saved 3]
state in less than 10 minutes. <-6.1.2 HFA.

“Social contribution 19 3

Scale: Duration from Initiation of Restore to *",T,‘;T;L’;T“‘“"”““@; i
Complete and verified state of a defined e | G
[Previous: Default = Immediately
Previous]] saved state.

Society !
\Producton actil

Initiation: defined as {Operator Initiation, System Initiation, ?}. Default = . S
Any. & ifmpact

o

s
s Ervironmental il
irmpact

Goal [ Initial and all subsequent released and
Evo steps] 1 minute?

Fail [ Initial and all subsequent released and Evo
steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

April 14, 2008 www.gilb.com 13



Testability: | o=
Type: Software Quality Requirement. -
Part of: Rock Solid Robustness

Initial Version: 20 Oct 2006

:::::

Version: 25 October 2007.

Status: Demo draft, =

Stakeholder: {Operator, Tester}.

Ambition: Rapid-duration automatic testing of

<critical complex tests>, with extreme operator setup and
initiation.

Scale: the duration of a defined [Volume] of testing, or a defined
[Type], by a defined [Skill Level] of system operator, under
defined [Operating Conditions].

Goal [All Customer Use, Volume = 1,000,000 data items, Type = WireXXXX Vs DXX, Skill = First Time Novice,
Operating Conditions = Field, {Sea Or Desert}. <10 mins.

Design Hypothesis: Tool Simulators, Reverse Cracking Tool, Generation of simulated telemetry frames
entirely in software, Application specific sophistication, for drilling — recorded mode simulation by
playing back the dump file, Application test harness console <-6.2.1 HFA




Another Real (Doctored) Example:
Financial Corp. Top Level Project requirements

DO YOU SEE ANYTHING RELATED TO MAINTAINABILITY?

1. Reduce the costs associated with managing redundant /
regionally disparate systems.

2. Single global portfolio management system.

3. Reduce overall spending with a reduction in redundant
initiatives.

4. Governance structures - system agnostic.

5. All projects in project portfolio system.

6. Reduce development project spend on low priority work with
better alignment between Technology and business demand.

7. Project portfolio Framework, Business Value metrics for
prioritization.

8. Reduction in cost over runs.

9. Definition criteria for project success.

10. Metrics and exception reporting for cost management.
11. Linkage of actual costs to forecast.

12. Increase revenue with a faster time to market.

13. Knowledge management, project ramp up templates.

April 14, 2008 www.gilb.com



3. The Multi-Level Requirement Principle.

e The levels of

maintainability we decide
to require cab be

e partly ‘constraintsii== v

* a necessary minimum of
ability to avoid failure,

e and partly desirable
‘target’ levels
e that are determined by
what pays off to invest
in.

April 14, 2008 www.gilb.com 16



Software Downtime: multiple Levels

Type: Software Quality Requirement. Version: 25 October 2007.
Part of: Rock Solid Robustness.

Ambition: to have minimal downtime due to software failures <- HFA 6.1
Issue: does this not imply that there is a system wide downtime requirement?

Scale: <mean time between forced restarts for defined [Activity], for a defined
[Intensity].>

Recompute, Intensity = Peak Level] N«
days <- HFA 6.1.1

— Goal [By 20087, Activity = Data Acquisition,
Intensity = Lowest level] : :B4DED
days ?7?

Stretch: GO days.

~—April 14, 2008 www.gilb.com 17




Restore Speed: Multiple Levels

Type: Software Quality Requirement. Version: 25 October 2007.

Part of: Rock Solid Robustness
Ambition: Should an error occur (or the user otherwise desire to do so), the system shall be

able to restore the system to a previously saved state in less than 10 minutes. <-6.1.2

HFA.
Scale: Duration from Initiation of Restore to Complete and verified state of a defined
[Previous: Default = Immediately Previous]] saved state.

Initiation: defined as {Operator Initiation, System Initiation, ?}. Default = Any.

and Evo steps] 1 minute?

=1 Fail [ Initial and all subsequent released
and Evo steps] 10 minutes. <- 6.1.2 HFA

Catastrophe: 100 minutes.

April 14, 2008 www.gilb.com 18



4. The Payoff Level Principle.

 The levels of maintainability it
pays off to invest in,

e depend on many factors —

e but certainly on the system
lifetime expectancy,

* the criticality/illegality/cost of
not being able to change
correctly or change in time,

e and the cost and availability of
necessary skilled professionals

to carry out the changes.

April 14, 2008 www.gilb.com

Eavihgs: - ] - 75%

Mainte nance _.

10%
rd

e &
Initial Investment 13%

Installation 2%

Investment/ Returns
Cost

Envircnment

" Busines s Process

IT Project




5. The Priority Dynamics Principle.

e The maintainability
requirements must
compete for priority
e for limited resources

e with all other
requirements.

e We cannot simply
demand arbitrary
desired levels of
maintainability.

April 14, 2008 www.gilb.com 20



The Engineering Solution

There are many small and less

critical software systems where P
Y ‘gif:ﬁié‘i ;:rf
e engineering the maintainability L& =">"""
. . |I l'l'--":-.._r.-"-n » r |
would not be interesting, B — %
e or would not pay off. El A= fﬁ# ==
B L [ Y ey
* Nobody cares. /_,-7-----_, . % |/ ke .
. . e _1';- ‘-.: ":-‘_f.:-._"f : .-'rt':l"*; . F
This talk is addressed to the vast Sl T |
. . o e '\::-_.!‘r r Y . - -
number of current situations where e Wl L

 the total size of software,

e the growth of software
annually,

e the cost of maintenance
annually — are all causing
management to wonder —

* |s there a better way?’

April 14, 2008 www.gilb.com 21



The method is straightforward,
and it is well-understood engineering
in ‘real’ engineering disciplines.

Resource Downtime Costs

levels.

* Insimple terms it is: | Busines MayNotRecover
1. Define the maintainability requirements Cheidtmnes Tine e
quantitatively. e

2. Design to meet those requirements, & } e

if possible and economic. ; e
3. Implement the designs S [ LossotCusmen

and test that they meet the required ; } Nocale Revenue npact

|

4. Quality Control that the design ek ik
Continues tO meet the required <2Hs 46Hs  1218Hs 24-36Hrs 48-72Hrs 96+ Hrs
maintainability quality levels, Time ToRecover
and take action in the case of
d e g r a d a t i O n AtTime Mark {Tn) Survival | evel Objective Occurs as Shown Below
V4
. T1 - Invoke F_'rohlem Mana_gement Process
to get back to current required levels: Escdionateain AR

A T4 - Imvoke Disaster Recovery/Business Resumption Measures
T5 - Executive Decision Point - May Invoke Regulatory Attention
Té6 - Business Viability Decreasing

Note: Time Marks in chart are typical and will he failored fo specific
client requirements based on business imperatives, legal and
requiatory requirements and other factors.

April 14, 2008 www.gilb.com 22



Let us take a simplified tour of the method.

Requirement specification (using ‘Planguage’ [Gilb 2005]:

Bug Fixing Speed:

Type: Software Product Quality Requirement.
Scope: Product Confirmit [Version 12.0 and on]
Ambition Level: Fast enough bug fixing so that it is a non-issue with our customers.

Scale of Measure: Average Continuous Hours from Bug occurs and is observed in any
user environment, until it is correctly corrected and sufficiently tested for safe
release to the field, and the change is in fact installed at, at least, one real
customer, and all consequences of the bug have been recovered from at the
customer level.

Meter: QA statistics on bug reports and bug fixes.

Past [Release 10.0] 36 hours <- QA Statistics

Fail [Release 12.0, Bug Level = Major ] 6 hours <- QA Directors Plan

Goal [Release 12.0, Bug Level = Catastrophic] 2 hours <- QA Directors Plan.
Goal [Release 14.0, Bug Level = Catastrophic] 1 hour <- QA Directors Plan.




Planguage Intelligibility

It should be possible to read this specification,
* slowly,
e even for those not trained in Planguage,
* and to be able to explain exactly what the requirement is.

Notice especially the ‘Scale of Measure’.

 Scale of Measure: Average Continuous Hours from Bug occurs
and is observed in any user environment, until it is
correctly corrected and sufficiently tested for safe release
to the field, and the change is in fact installed at, at least,
one real customer, and all consequences of the bug have
been recovered from at the customer level.

* It encompasses the entire maintenance life cycle
e from first bug effect observation
e until customer level correction in practice.

* Thatis a great deal more than just some programmer staring at code
and seeing the bug and patching it.

e The corresponding design
¢ will have to encompass many processes and technologies.

April 14, 2008 www.gilb.com

24



111G W GUNVIWVYIYVYIL 1THIW JUIN

problems

Here is a list of the areas we nee

Hypothesis Time

design for, and quite possibly have a

secondary target level for each:

1. Problem Recognition Time.

How can we reduce the time from bug
actually occurs until it is recognized

and reported?
2. Administrative Delay Time:

How can we reduce the time from bug

6. Quality Control Time

7. Change Time

8. Local Test Time

9. Field Pilot Test Time

reported, until someone begins action

on it?
3. Tool Collection Time.
How can we reduce the time delay to

10. Change Distribution Time

11. Customer Installation Time

collect correct, complete and updated

information to analyze the bug: source

code, changes, database access,
reports, similar reports, test cases,
test outputs.

4. Problem Analysis Time.

Etc. for all the following phases
Apdri?ﬂ,”z%gs' and implied, in the Scale
scope above.

12. Customer Damage Analysis Time

13. Customer Level Recovery Time

14. Customer QC of Recovery Time

www.gilb.com

25



Let us take a look at a possible <=
first draft of some design ideas:

 Note: | have intentionally suggested some
dramatic architecture,
— in an effort to meet the radically improved
requirement level.

 The reader need not take any design too uniersiy of Alaska's

Museum of the North

SeriOUSIV. in Fairbanks

e This is an example of trying to solve the
problem, using engineering techniques
(redundancy)

— that have a solid scientific history.




1. Problem Recognition Time.—£¢=

 Design: Automated N-version distinct
software comparison [Inacio 1998]

— at selected critical customer sites,
— to detect potential bugs automatically.

Standby

April 14, 2008 www.gilb.com 27



Trillium | Distributed Fault-Tolerant/High-
Availability (DFT/HA) Core

Complete recovery during failure.
— This feature is available in both pure fault-tolerant and distributed fault-tolerant systems.
— When a failure occurs, failed protocol layers are able to completely recover stable state information.
— All protocol resources present in a stable state during the failure are maintained on the standby.
Application restart on processor loss.

— This feature is applicable to pure distributed systems. If a processor in a pure distributed system fails,
applications on the failed processor may be restarted on available processors to provide service for
subsequent user traffic.

Survive up to n-1 faults.

— DFT protocol layers may survive up to n-1 faults without loss of service where n is the number of
processors over which the protocol layer was distributed.

— With the lost application restart feature enabled, a distributed protocol layer may continue to provide
full service until the last processor in the system fails.

— User defined system operations. Advanced distributed system operations such as dynamic load
balancing may be implemented using basic services provided by the core software.

Graceful node shutdown.

— The system manager provides an operation to gracefully shutdown a node and an option to redistribute
the protocol load onto remaining processors in the system

— . The load redistribution is completely transparent to the system users.
Maintenance operations.
— The system manager provides an operation to swap the states of an active and standhy nod

— This functionality may be used to perform maintenance operations on the system w
down

— . These operations are completely transparent to the system users and will not interrupt
provided by the system. L

Standby



AN/

b

2. Administrative Delay Time:

 Design: Direct digital report
— from distinct software discrepancies

— to our global,
e 3zone,
e 24/7
* bug analysis service.

Standby

April 14, 2008 www.gilb.com 29



3. Tool Collection Time.

 Design: All necessary tools are electronic,
— and collection is based on
e customers installed version and its fixes.

— The distinct software, bug capture
e collects local input sequences.

Standby

April 14, 2008 www.gilb.com 30



y 5 >\
o i:':_—

—— M\

¥ i N
! M %
|y

4. Problem Analysis Time.

 Analyst Selection:

— Design: The fastest bug analysts are

e selected based on actual past performance statistics,
and

* rewarded in direct relation to their timing

— for analyzing root cause, or correct fix.

April 14, 2008 www.gilb.com 31



A % 2
by 71 _i:';';
) /

]

5. Correction Hypothesis Time

 Design: Same design as Analyst Selection,

— but applies to correct change specification speed
statistics.

April 14, 2008 www.gilb.com 32



— AN/
. ! s
48 %

6. Quality Control Time

 Design: Rigorous
— 30 minute or less inspection
— of change spec by other bug analysts,

— with reward for finding major defects
e as judged by our defect standards.

CAD Reference

Repeatable & Automated

As Built Part

April 14, 2008 www.gilb.com 33



7. Change Time

 Design: Changes are applied
— in parallel with QC,
— and modified only if change defects found in QC.

Metadata Management,

Content Enhancements,
and Documentation

J \
. Ml o
— .



M o
8. Local Test Time o
 Design: Automated -
Test. Based on \ " | e
distinct software . -y Tedang
independenty CHANEES
— to distinct modules, “Rewng reng’
and | - B )
— running reasonable ™"
test sets, g™
— until further notice o J;"/ -
— or failure. e | i

April 14, 2008 www.gilb.com 35



9. Field Pilot Test Time

 Design:
Regression  integration

— After 30 minutes N Memng | redng
successful Local Test i iy b

— the changes are

implemented Tesung resting
e at a customer pilot
site Testng
— for more realistic ’ //
testing,
. . Leoad / User Accpt
» In operation, o

Tﬂﬂna
» in distinct /*-fmm

Localization

software safe Q
April 14, 2008 mode. www.gilb.com 36



10. Change Distribution Time

Incident Handling Process

* Design: All necessary
changes are

— readied and

1.
Awareness:
PSIRT is Matified of
Security Incident
T
Feedback:
"Monitor and Incorporate
Feedback from

Customer and Cisco
Internal Input

2
Active Managemeant:
PSIRT Prioritizes &
Identifies Resources

— uploaded for customer
download,

[
Notification:
Realeased 1o Al

— even before Local Test iﬁﬂ:?n“;zzi.,,
Begin,

3
Fix Determined:
PSIRT Coordinates Fix
& Impact Assessmant

W, Cisco,comigo/ psirt!

5

Integration &

Mitigation: Communication Plan:
PSIRT Imvolves

PSIRT Sets Timeframe
Experts and & Matification Format /* » Security Responses
Executives = Security Advisories
- « Technical Tips
» Product Bullefins

— and changed only
 if tests fail.

The incident handling process can laka hn ’’’’’’
depending on the scope.
April 14, 2008

www.gilb.com



— D:',jl‘f"

11. Customer Installation Timé

 Design: Customer is given options of
— manual or
— automatic changes,
— under given circumstances

Conventional |
Processes
1 Dowriload ] Cormventional File
1 _ (ZIP, CAB, RAR]
2 I Exiraction Installation
3 i Installation
NOS-Weblnstall® I
---------------------- -l
tren BESAEET]
J SIRTT] [ETE i getPlus®, NOSS0O®
NOSS oD ' Saved Time & NOS-Installer®
NOS-Installere .. Installation |

Time

April 14, 2008 www.gilb.com 38

{ Al &
|y



12. Customer Damage Analysis Time N0~

Gearbox damage

e Design:
e <|ocal customer solution>. Examination and documentation
 We don’t have good mhﬂlmm
automation here. Project schedule and statement of costs
* Assume none until proven —=— m:m i
otherwise. 4
Necessary operational sequences like production of
 We need to be aware of nﬂmmmﬂhHﬂmi assembling, etc.
— all reports sent Tﬂtrun

— and databases updated £5 — eate

that may need
correction.

[ J
April 14, 2008 www.gilb.com 39



! | s

13. Customer-Level-Recovery Time

° DeSign: -ﬁ:i_ deurhmll'fﬁﬂum j_____"":::—
i
e same problem as Examination and documentation
of the present damages
Customer Damage I
. . Project schedule and statement of costs
Analysis Time 1
. =z Order to repair e
 may be highly local !
Mecessary operational sequences ke production of
and manual. i o ki e
e Isitreally out of Lol

our control? < — s

April 14, 2008 www.gilb.com 40



 Design:
e 30-minute Quality Control
— of recovery resulits,

— assisted by our quality
standards,

— and for critical
cusitomers

— QC By our staff,
 From our office

e Or on customer site.

April 14, 2008 www.gilb.com 41



'''''

My main point is [
— that each sub-process of %<
the maintenance o

operation Many

tends to require a

separate and distinct T, e

design (1 or more cpen

designs each). i
There is nothing simple 5

like software people
seem to believe,

that better code
structures,

coding practices,
documentation,

and tools
will solve the

Technology  Business Sum Requirements
Investment Practices fm M Mgrm\m Rﬂ-mgmrmng
50% 185%
50% o 265%
50% 5-10% 5-10% 50% % 130%
50% 50% | 180%
45% 53% 03%
50% 5% 61% 51%
429% 177%
2 m a ‘ IIIIII
80% % 75% 0% 0 5% | 260%
109 0% % 70%
50% : .
Next Slide
15%
15% 18 98%
30
16:1



DODCEl. FEISINSCOITI HTIPdAdCL ESLIMMdLorn 1dolie.

Designs
Design Ideas -> Technology =~ Business  Peaple Empowerment ~ Principles of Business Process | Sum Requirements
Investment  Practices IMA Management  Re-engineering

. 50% 10% 5% 5% 5% 60% 185%
Requirements
Availabiliry 50% 5% 5-10% 0% 0% 200% 265%
90% <-> 99.5% Up time
Usability 50% 5-10% 5-10% 50% 0% 10% 130%
200 <-> 60 Requests by Users
Responsiveness 50% 10% 90% 25% 5% 50% 180%
70% <-> ECP’s on time
Productivity 45% 100% 53% 303%
3:1 Return on Investment 50% R-> D Impaets 15% 61% 251%
Morale
72 <-> 60 per month on Sick Leave
Data Integrity 42% 10% 25% 5% 70% 25% 177%
88% <-> 97% Data Error %
Technology Adaptability 5% 30% 5% 60% 0% 60% 160%
75% Adapt Technology
Requirement Adaprability 80% 20% 60% 75% 20% 5% 260%
? <-> 2.6% Adapt to Change
Resource Adaptability 10% 80% 5% 50% 50% 75% 270%
2.1M <-> ? Resource Change
Cost Reduction 50% 40% 10% 40% 50% 50% 240%
FADS <-> 30% Total Funding
Sum of Performance 482% 280% 305%  390% 315% 649%
Money % of total budget 15% 4% 3% 4% 6% 4% 36%
Time % total work months/year 15% 15% 20% 10% 20% 18% 98%
Sum of Costs 30 19 23 14 26 22
Performance to Cost Ratio 16:1 14:7 13:3 27:9 12:1 29:5




Broader Maintainability Concepts

Maintainability in the strict engineering
sense is usually taken to mean bug

. o Performance
fixing.
) ) Quality
| have however been using it thus far Availability
to describe any software change Reliability
activity or process. Maintainability
Integrity
We could perhaps better call it Threat
‘ HH YL Security
software change ability’. Adaptability
Different classes of change, will have Flexibility

Connectability
Tailorability

different requirements related to
them,

Extendibility
Interchangeability

e and consequently different

1 : — Upgradeabili
technical solutions. Pg ty

Installability
Portability
— Improveability

It is important that we be very clear

* insetting requirements,
e and doing corresponding design,

e exactly what types of change we
are talking about.




General ‘Change Attribute’ Tailoring

e The following slides will give a
general set of patterns for
e defining and distinguishing
different classes of

_ Scale:
‘maintenance’.

% of transactions
e Butin your real world, you will successfullv combpleted
want to tailor the definitions to . y P
your domain. by defined [Person]

 You can initially tailor using doing defined [Task].

the ‘Scale’ of measure
definition.

Goal [Task = Update,
e And continued tailoring can Person = New Hire,

be done by defining . Deadline = Phase 3]
[conditions] in the — Fes 60%

requirement level qualifier.




A generic set of performance measures, including
several related to change.

For example: h
Code Portability:

e L
— Application
Scale: — I I I be Portability
T

g | <€ - |nterf
Effort in Hours £ | Ll
—————— { o
needed to Port = :
_ g Certified

each 1000 Non-Commentary Lines of Codeu; | Product
from a defined [Home Environment] i

. : £ | — Operational
to a defined [Target Environment], S | ——— &~ e

using defined [Tools] i Services
and defined [Personnel].

Goal

[Home Environment = {.net, Oracle,},

Target Environment = {Java++, Open Source, Linux},
Tools = Convert Open ,

Personnel = {Experienced Experts, India}] 60
hours.

April 14, 2008 www.gilb.com 46



A Generic Set of Performance measures - including several related to ‘change’

154 Competitive Engineering

Performance

Quality

Availability

Reliability
Maintainability
Integrity
Threat
Security

— Adaptability
Flexibility

Connectability
Tallorability

t—: Extendibility
Interchangeabilit
— Upgradeability

Installability
Portability
Improveability

— Usability

Entry Level Experience
p—— Training Requirement
Handling Ability

— Likeability
Demonstratability

Resource Saving
Financial Saving

—— Time Saving
j— Effort Saving

Equipment Saving

Workload Capacity

t—— Throughput
Response Time

Storage Capacity

Figure 5.3

Performance

——— Quality

One decomposition possibility for performance atiributes with emphasis on the detail of

the quality atfributes.

April 14, 2008

www.gilb.com

Adaptability

\ 7
Availabilty -
| b |
Reliability
Maintainability
Integrity
Threat
Security

Flexibility
Connectability

Tailorability

Extendibility
Interchangeability

— Upgradeability

Installability
Portability
— |Improveability

47



The attribute names used are arbitrary choices by the author.

* They only start to take on meaning when defined,
* with a Scale of measure.

 There are no accepted or acceptable standards here,
* and certainly not for software.

* Even in hardware engineering, there is an accepted pattern - such as “Scale: Mean Time
to Repair”.

 But it is accepted that we have to further define such concepts /ocally,
* such as the meaning of ‘Repair’.

Find where Glossary Term is used

Source via the Index

English Name (Glossary Term)
Type \ l e

Concept Number *nnn
Keyed Icon Concept Main Definition

Drawn Icon
Related Concepts

Notes

o Synonyms
Abbreviation Acronym



Maintainability Measures

* Here are some of the general
patterns we can use to define and
distinguish the different classes of
change processes on software.

e First the ‘Bug Fixing’ pattern (from
which we derived the example at
the beginning of this talk).




156 Competitive Engineering

Maintainabllity
Maintainability:

: C Quali i . t
zwygﬁdes?r?gﬁ;e;al:;ye?uzqnl;;;-g: e:::lministrative Delay, Tool Collection, Problem Analysis, CO m p O n e n S ]
Change Specification, Quality Control, Modification Implementation, Modification Testing {Unit .

Testing, Integration Testing, Beta Testing, System Testing}, Recovery}. d e rlve d fro m a
hardware
. s from de engineering view,
assigned to a defined [Maintenance Instance].
Tool Collection:
S:;:ie: CI::tk c:::urs for defined [Maintenance Instance: Default: Whoever is assigned] to ad Opted for

acquire all defined [Tools: Default: all systems and information necessary to analyze, correct
and quality control the correction].

Problem Analysis: S Oftwa re
Scale: Clock time for the assigned defined [Maintenance Instance] to analyze the fault symp- -
toms and be able to begin to formulate a correction hypothesis.

Problem Recognition:

Scale: Clock hours from defined [Fault Occurrence: Default: Bug occurs in any use or test of
system] until fault officially recognized by defined [Recognition Act: Default: Fault is logged
electronically).

Administrative Delay:

Scale: Clock hours from defined [Recognition Act] until defined [Correction Action] initiated and

Change Specification:

Scale: Clock hours needed by defined [Maintenance Instance] to fully and correctly describe OUR GOAL I5TO LIRITE 1 HOPE M GONNA

the necessary correction actions, according to current applicable standards for this. BUGFREE SOFTWARE. THLS WRITE ME A

Note: This includes any additional time for corrections after quality control and tests. TLL PAY A TEN-DOLLAR DRIVES NEL) MINIVAN
BONUS FOR EVERY BUG THE RIGHT ~ THIS AFTER-

Quality Control: YOU FIND AND FIR, BEHAVIOR,  NOON!

Scale: Clock hours for quality control of the correction hypothesis (against relevant standards).
Modification Implementation:
Scale: Clock hours to carry out the correction activity as planned. "Includes any necessary
corrections as a result of quality control or testing.”
Modification Testing:
Unit Testing:
Scale: Clock hours to carry out defined [Unit Test] for the fault correction.
Integration Testing:
Scale: Clock hours to carry out defined [Integration Test] for the fault correction.
Beta Testing:
Scale: Clock hours to carry out defined [Beta Test] for the fault correction before official
release of the correction is permitted.
System Testing:
Scale: Clock hours to carry out defined [System Test] for the fault correction.
Recovery:
Scale: Clock hours for defined [User Type] to return system to the state it was in prior to the
fault and, to a state ready to continue with work.

Source:%ﬂ«g'.lfi&éveng% extension of some basic ideas from Ireson, Editor, H\éfl\é\g[YI‘l‘& 'Il-g'r? 2L | 50
book, McGraw Hill, 1966 (Ireson 1966).

5 Afuas Eemall BCOTTADAMS @ADL COM
1fi3 & 1888 Unised Feature Syndicuts, ine (NYC)




Notice that Maintainability in the narrow sense
(fix bugs)
is quite separate from other ‘Adaptability’ concepts.

This is normal engineering,

» Which places fault repair together with reliability
and availability;

« Those 3 determine the immediate operational
characteristics of the system.

The other forms of adaptability are more about
potential future upgrades to the system,

« change, rather than repair. A
Change and repair, have in common that .EDM you ever
« our system architecture has to make it easy to o8 * a"'%et the feeling
change, analyze and test. *
The system itself is unaware of
» whether we are correcting a fault
e or improving the system.
The consequence is that
 much of the maintenance-impacting ‘design’ or = =
‘architecture’
. benefits
* most of the types of maintenance (fix and

adapt). P i - - s e - S gy
April 14, 2008 www.gilb.com 51

your world was
about to cﬁange?




Here are a gewercc set of definitions for

the ‘Adaptaditity’ concepts.

Adaptability: ‘The efficiency with which a system can be
changed.’

Gist: Adaptability is a measure of a system’s ability to
change.

Includes: { a set of scalar variables, such as Portability}.

Note: probably not simple enough to define with a
single Scale.

Type: Complex Quality Attribute.

F get the feeling

your world was

Since, about to changeQ

. if given sufficient resource, a system can be changed in
— almost any way,

* the primary concern is with the amount of
— resources

. (such as time, people, tools and finance)
 needed to bring about specific changes

— (the change ‘cost’).
April 14, 2008 www.gilb.com 52



The Adaptive Cycle

K: conservation
things change slowly;

ri growth/exploitation
urces ‘locked up'

resources readilyavatishio

: release

:hanie very rapildy:
‘locked up’ resources
suddenly ralaar.ad

amha' [ O S aw LT e nl
system boundaries tenuous;
innovations are possible

Figure 3. The adaptive cycle, as a simple loop, showing possible changes between phases.

http://www.resalliance.org/564.php

4/14/2008 www.gilb.com



Adaptability:
Viewed as
Elementary or Complex concept..

Adaptability:
Type: Elementary Quality Requirement.

Scale: Time needed to adapt a defined [System]
from a defined [Initial State] to another defined
[Final State] using defined [Means]. S

Adaptability:
Type: Complex Quality Requirement.

Includes: {Flexibility, Upgradeability}. @

!pha: r

g wry raplidy;
syste £
inno

ddl I d

Figure 3. The adaptive cycle, as a simple loop, showing possible changes between phases.

April 14, 2008 www.gilb.com 54



“No system can be understood or managed
by focusing on it at a single scale.”

Multiple scales and cross-scale effects - "Panarchy"ENo system can be understood
or managed by focusing on it at a single scale.

e All systems (and SESs especially) exist and function at multiple scales of space,
time and social organization,

— and the interactions across scales are fundamentally important in
determining the dynamics of the system at any particular focal scale.

— This interacting set of hierarchically structured scales has been termed a
"panarchy" (Gunderson and Holling 2003).

/een scales

4/14/2008 http://www.resalliance.org/564.php >



Flexibility:

Gist: ‘Flexibility’ concerns the
‘in-built’ ability of the system

to adapt, ‘ S e
or to be adapted,
i mﬁr:lmmw v
by its users, _ £ Thedil
to suit conditions —
(without any fundamental system mmrnfgm _—
modification Conededaess

by system development). e | m'mm“
Type: Complex Quality Requirement. ’ | \ -
Includes: {Connectability, )
Tailorability}.
See next 2 slides!

Possible Synonyms: Resilience,
Robustness

April 14, 2008 www.gilb.com 56




Connectability:
‘The cost to interconnect the system to its environment.’

Gist: The cost of connecting one
set of interfaces to defined
environments with other

. THE INTERMET
interfaces Locd Internet
op_ope Are ale twork Fulces
Part Of: Flexibility. (LAN])
Scale: the Effort needed O erret
. O Yy ACCESS
to connect a defined [Home OO o Frovider
Interface] C— e
to a defined [Target Interface] O =

. . wl;b | =)
using defined [Methods] Sarporate i %E@_\
==t  Persond

with minimum allowed system Work-and-Play
[Degradation]. Stations



Tailorability:

Gist: The cost to modify
the system to suit
defined future -

biodegradable

:::::::

B o ] ticle i
° b Anti filament ! cuticle
conditions o gl - =
° wrinkle T N " B protection

hhhhh

Machine Hoht rope. o it & : b Softness
° epe washable  handed 5 7 .f =
o a - helix : L e == . o
° ° L i oo _. uick
- : . drying
Elasticity A
I . Sweat
(] ickin remova
Type: Compler Qualit |
ire : .

resistant
Ballistic

Requirement.

proof

CSIRO & Copyright 2005

Includes: {Extendibility,

Intercha ngea bil ity}. Multiple Atti?ts of Wool Fiber !

April 14, 2008 www.gilb.com 58



Extendibility: Scalability

Part Of: Tailorability.
Synonym: Scalability.

Scale: The cost to add to nﬂ@ =\
a defined [System] =ee s
a defined [Extension Class] Time Critical Business Weh Contents Time Sensitive Info

and defined [Extension Quantity]
using a defined [Extension Means].

R

Alcent Mﬂ |:]I|E

“In other words, add such things as a new user
or

Aicent Mobile
Messaging Server

a new node.”

_—
L) L) ) J}ﬂ L)
Type: Cemplexr Quality Attribute. ’f'%' ’f'%' b % ’f'%'

o _,-' Global Mehile Dperaturs . e,
" ¢ v s ..
Includes: {Node Addability, ] S = %
Connection Addability, o
Application Addability,

Subscriber Addability}.

a,

April 14, 2008 www.gilb.com 59



Interchangeability:

‘The cost to modify use of system components.’

Interchangeability

Gist: This is concerned with the ability to modify
the system, to switch from using a certain set of
system components, to using another set.

Part Of: Tailorability.

Type: Elementary Quality Attribute.

“For example, this could be a daily occurrence
switching system mode from day to night use.”

Scale: the Effort needed to
Successfully,
without Intolerable Side Effects,
replace a defined [Initial Set] of components,

with a defined [Replacement Set] of
system components,

using defined [Means].

April 14, 2008 www.gilb.com

-J'.;.J_l::
'ﬂj-_’

60



Upgradeability:
‘The cost to modify the system fundamentally;
either to install it, or to change out system components.’

Upgradeability:

Gist: This concerns the ability of the
system to be modified by the
system developers or system
support in planned stages (as
opposed to unplanned
maintenance or tailoring the
system).

Type: Cempler Quality Requirement.

Includes: {Installability, Portability,
Improveability}.

Standby instance
provides for hot
upgradeability and
software ault

Active J Standby tolerance.
os | os |
VMM |
Hardware
>/

Installability: ‘The cost to install in defined conditions.’

Pattern: This concerns installing the system code and
also, installing it in new locations to extend the
system coverage. Could include conditions such as
the installation being carried out by a customer or,
by an IT professional on-site.

Portability: ‘The cost to move from location to location.’
Scale: The cost to transport a defined [System] from a
defined [Initial Environment] to a defined [Target
Environment] using defined [Means].

Type: Complex Quality Requirement.

Includes: {Data Portability,

Logic Portability,

Command Portability,

Media Portability}.

Improveability: ‘The cost to enhance the system.’

Gist: The ability to replace system components with

others, which possesses improved (function,
performance, cost and/or design) attributes.

Scale: The cost to add to a defined [System] a defined
[Improvement] using a defined [Means].



Hopefully this set of patterns
— gives you a departure point

— for defining those maintenance

attributes

— you might want to control,
guantitatively.

The above adaptability definition

— was use to co-ordinate the work
Enforcer

e of 5,000 software
engineers,

e and 5,000 hardware
engineers,

* in UK,

* in bringing out a new
product line at a computer
manufacturer.

 Where ‘Adaptability’ was
the Number One Product
Characteristic

— The Company became
profitable for the next 14

years..
April 14, 2008

This Basic ‘Adaptability’ Pattern
Was Successfully Applied

-'-'-'ebﬁm'.-" i
— el
-'fMS-urmTur

__.___;_,I.'.;‘_._I........... N

Imterceptor

Doyt Asmarmacarian
hdsrwan & ool —

o e, S v - |
550 Delogator e e e ,
Security Patterns
www.gilb.com 62



| ne Sottware Architect Kole In
Maintainability

The role of the software architect is:

e to participate in clarification of the requirements that will be used as
inputs to their architecture process.

e to insist that the requirements are testably clear: that means with
defined and agreed scales of measure, and defined required levels of ¢
performance.

e to then discover appropriate architecture,

— capable of delivering those levels of performance, hopefully within resource
constraints, and

e estimate the probable impact of the architecture,

— onthe requirements (Impact Estimation)

¢ define the architecture in such detail

— that the intent cannot be misunderstood by implementers,
— and the desired effects are bound to be delivered.

e monitor the developing system as the architecture is applied in practice,
e and make necessary adjustments.

e finally monitor the performance characteristics throughout the lifetime
of the system,

— and make necessary adjustments to requirements

— and to architecture,

885 to maintain needed system performance characteristics.

— . inor
April 14, 2 www.gilb.com 63



Evaluating Maintainability Designs Using Impact Estimation

.Y R RN IR RN e S B FF TS B _BY | & | CA

e See Powerpoint Notes for detailed written comment.

April 14, 2008 www.gilb.com 64



Architecture Level Impact Estimation Table

.............................. Deliverables
Telephony | Modularity | Tools | User GUI & | Security | Enterprise
Experience | Graphics

Business

Objective

Time to Market 10% 10% 15% | 0% 0% 0% 5%

Product Range 0% 30% 5% 10% 5% 5% 0%

Platform 10% 0% 0% 5% 0% 10% 5%

Technology

Units 15% 5% 5% 0% 0% 10% 10%
' | Operator 10% 5% 5% 10% 10% 20% 10%

Preference

Commoditization 10% -20% 15% | 0% 0% 5% 5%

Duplication 10% 0% 0% 0% 0% 5% 5%

Competitiveness 15% 10% 10% | 10% 20% 10% 10%

User Experience (%0 20% 0% 30% 109 0% 0%

Downstream 5% 10% 0% 10% 0% 0% 5%

Cost Saving

Other Country 5% 10% 0% 10% 5% 0% 0%

Total Contribution 90% 80% 55% | 85% 50% 65% 55%

Cost (£M) 0.49 1.92 0.81 [ 1.21 2.68 0.79 0.60

Contribution to Cost Ratio 184 42 68 70 19 82 02

. See PPT Notes
April 14, 2008 www.gilb.com 65



Engineering “Maintainability”: Green Week
Weekly ‘Refactoring’ at Confirmit

e Opeed

j Maintainability

o Nunit Tests

|
“ PeerTests

- TestDirectorTests

Current Status Improvemen Goals Step 6 (week 14) Step 7 (week 15)
| units Past | T | Goal |k Impact | Actual Impact | E
| 100,0 100,0 of 80| 100 100 100
Speed [
1 100,0| 100,0| | | 100 100
inability.Doc.Code |
| 100,0] 100,0] | | 100 100
InterviewerC |
HUnitTests ]
[ 0.0] 0.0 o ag|
PeerTests 1
| 100.0] 100.0] of 0] 100 100
FxCop I
| 0.0] 10.0] 10 o] 0
stDirectorTests ]
| 100,0] 100.0] of g0] 100 100
T 0 ]
| 20| 20| o] 1] 2 2
Rot soryC 1 1
= 0] 0.0] o] 8] o
Speed I
I 0.0] 0.0] o] 80] 100
e T
I 00.0| 0,0 0] 80| 70
Maintainability.Doc.Code |
| 00.0| 100,0] | 80| 100 100
ionStatus ]
HUnitTests I

|
' Robustness.Correctness

April 14, 2008

POT-SHOTS — Brilliard Theaghits in 17 wards ar leas

P it D,

SOMETHING'S

WIT

MY LIFE -~
SHOULD | TRY

o FIX IT
OR WIT
UMTIL

| GET
AMOTHER 7

[AEE T TRt
D Achleigh Brilhant

e )

TATAT) g J
|’ ] LT]
WA !F|.|]:".E.'J.-J N e o ]

Robustness.Boundary
Conditions

ResourceUsage.CPU
Maintainability.DocCode

SynchronizationStatus .



Lecture Summary

e The many types of maintainability — ease of

change — characteristics needed in large scale
or critical software,

— can be architected
— and engineered using numeric measurement
— and sound engineering principles,

— instead of conventional small scale
programming culture intuition.

* Real systems engineers will move towards
this mode of ‘real’ software engineering.

e We cannot continue to have the craft of
programming culture, dominate our systems

engineering practices — . ()
e pbecause software has become too critical a [
component of every major system. '

 The real engineers have to take control.

e The programmers will not wake up without
encouragement from real engineers.

April 14, 2008 www.gilb.com 67



References

References

Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering, and Software
Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-Heinemann. Sample
chapters will be found at Gilb.com. _

Chapter 5: Scales of Measure:
http://www.gilb.com/community/tiki-download_file.php?fileld=26
Chapter 10: Evolutionary Project Management:
http://www.gilb.com/community/tiki-download_file.php?fileld=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers,
slides, book manuscripts, case studies and other artifacts
which would help the reader go into more depth

g BOOK FOR SYSTEMS ENGINEERING, RE

\CENEFAING, AND SOFTVWARE ETSGINEERING USING PLANGLIATE

INCOSE Systems Engineering Handbook v. 3
INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

[Dart 93] Susan Dart, Alan M. Christie , Alan W Brown
A Case Study in Software Maintenance, Technical Report CMU/SEI-93-TR-8 ,
ESC-TR-93-185, June 1993

Chris Inacio: Software Fault Tolerance, Carnegie Mellon University

18-849b Dependable Embedded Systems, Spring 1998
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/

Google N-Version Software for more information on distinct software and N-version software.

April 14, 2008 www.gilb.com 68



BIOGRAPHY

Tom Gilb is an international consultant, teacher and author.

His 9t book is ‘Competitive Engineering: A Handbook
For Systems Engineering, Requirements Engineering, and
Software Engineering Using Planguage’ (August 2005
Publication, Elsevier) which is a definition of the planning
language ‘Planguage’.

e He works with major multinationals such as Credit Suisse,
Schlumberger, Bosch, Qualcomm, HP, IBM, Nokia, Ericsson,
Motorola, US DOD, UK MOD, Symbian, Philips, Intel,
Citigroup, United Health, and many smaller and lesser known
others. See www.Gilb.com . He can be reached at:
Planguage@mac.com




References

Gilb, Tom, Competitive Engineering, A Handbook For Systems Engineering, Requirements Engineering, and

Software Engineering Using Planguage, ISBN 0750665076, 2005, Publisher: Elsevier Butterworth-
Heinemann. Sample chapters will be found at Gilb.com.

Chapter 5: Scales of Measure:
http://www.gilb.com/community/tiki-download_file.php?fileld=26
Chapter 10: Evolutionary Project Management:
http://www.gilb.com/community/tiki-download_file.php?fileld=77

Gilb.com: www.gilb.com. our website has a large number of free supporting papers, slides, book manuscripts,
case studies and other artifacts which would help the reader go into more depth

INCOSE Systems Engineering Handbook v. 3
INCOSE-TP-2003-002-03, June 2006 , www.INCOSE.org

TR LI R

[Dart 93] Susan Dart, Alan M. Christie , Alan W Brown

A Case Study in Software Maintenance, Technical Report CMU/SEI-93-TR-8,
ESC-TR-93-185, June 1993

Chris Inacio: Software Fault Tolerance, Carnegie Mellon University

18-849b Dependable Embedded Systems, Spring 1998
http://www.ece.cmu.edu/~koopman/des s99/sw_fault_tolerance/

Google N-Version Software for more information on distinct software and N-version software.

April 14, 2008 www.gilb.com

70




Last Slide

/2008

4/14



Biography

BIOGRAPHY

Tom Gilb is an international consultant, teacher and author. His 9t"
book is ‘Competitive Engineering: A Handbook For Systems
Engineering, Requirements Engineering, and Software Engineering
Using Planguage’ (August 2005 Publication, Elsevier) which is a
definition of the planning language ‘Planguage’.

He works with major multinationals such as Credit Suisse,
Schlumberger, Bosch, Qualcomm, HP, IBM, Nokia, Ericsson, Motorola,
US DOD, UK MOD, Symbian, Philips, Intel, Citigroup, United Health,
and many smaller and lesser known others. See www.Gilb.com .




